
S E L F - S I M I L A R  S C A T T E R I N G  O F  E V A P O R A T I O N  P R O D U C T S  

OF A SOLID WALL SUBJECTED TO VARIABLE ENERGY LIBERATION 

A~ T .  S a p o z h n i k o v  UDC 534.222.2 

A s y s t e m  of s e l f - s i m i l a r  equat ions of motion of the evapora t ion  produc ts  ( ideal  gas) under  
the effect  of v a r i a b l e  ene rgy  l i be ra t i on  is cons ide red .  Conditions a r e  fo rmula t ed  for  the 
ex i s t ence  and uniqueness  of a solut ion of the  p r o b l e m  of evapora t ion  and s c a t t e r i ng  of a 
m a t e r i a l  in a vacuum. 

! .  In solving the p r o b l e m  of evapora t ion  and s c a t t e r i n g  of a m a t e r i a l  in a vacuum with gradua l  energy  
l ibe ra t ion ,  it is  o r d i n a r i l y  a s s u m e d  that  the evapora t ion  occu r s  in a l a y e r  of negl ig ibly  sma l l  th ickness ,  the 
evapora t ion  produc ts  can be c o n s i d e r e d  an ideal  gas,  and the change in dens i ty  and ve loc i ty  of the unevap-  
o ra t ed  m a t e r i a l  can be neglected.  The motion of the condensed m a t e r i a l  is  t h e r e f o r e  not cons ide red ,  and 
the p r o b l e m  reduces  to cons ide r ing  the motion of an ideal ,  v a r i a b l e - m a s s ,  gas l a y e r  bounded by the evapora -  
t ion su r face  on one side and a f ree  su r face  on the o ther .  Such a s chemat i za t ion  of the phenomenon is used  
in [1-3], for  example .  

The fo rma t ion  of the evapora t ion  condit ions is  e s s e n t i a l  in fo rmula t ing  the p r ob l e m  in the a p p r o x i m a -  
t ion mentioned. These  condit ions connect  the p a r a m e t e r s  of the evapora t ed  and unevapora ted  m a t e r i a l  on 
both s ides  of the evapora t ion  sur face  and govern  the law of i ts motion. Since the motion of the unevapora ted  
m a t e r i a l  and the s t r u c t u r e  of the l a y e r  where  evapora t ion  occur s  a re  not cons ide red ,  then the evapora t ion  
condi t ions a r e  not known beforehand and a r e  fo rmula ted  f rom some phys ica l  r eason ing  about the p r o c e s s  as  
a whole. These  condi t ions should a s s u r e  the ex i s tence  and uniqueness of the solut ion of the p rob lem.  

The ex i s tence  and uniqueness  of the solut ion of the p rob lem about the s c a t t e r i n g o f t h e  sur face  e v a p o r a -  
t ion p roduc ts  f rom a so l id  wall  in a vacuum a re  c ons i de r e d  he re in  in a spec i f ic  example  of s e l f - s i m i l a r  
motion. 

2. At the in i t ia l  instant  t =0 the condensed m a t e r i a l  occupies  the ha l f - space  x -> 0 and is c h a r a c -  
t e r i z e d  by a dens i ty  P0, a p r e s s u r e  P0, and a ze ro  ve loc i ty .  

The m a t e r i a l  adjoins the vacuum at the point x=0 .  Fo r  t > 0 energy  is l i b e r a t e d  in the m a t e r i a l  at 
the r a t e  

OE/Ot = Q = Crn "~ t ~ 1 (2.1) 
x 

<l~l = I[Jd3: ) 
0 

where  E is  the spec i f ic  in te rna l  energy ,  m is  the Lagrange  m a s s  coord ina te ,  C and a a r e  constants ,  where  
C >0  and 

O <  a <  I (2.2) 

Condition (2.2) means  that  a f inite energy  is l i b e r a t e d  in a f inite m a s s  between 0 and x in the finite 
t ime  f rom 0 to t .  Moreover ,  for  0 < a < 1 the r a t e  of ene rgy  l i be ra t i on  d imin i shes  as m and t grow. 

The motion of vapor  sub jec ted  to the ene rgy  l i be ra t i on  (2.1) is d e s c r i b e d  by a s y s t e m  of gasdynamics  
equat ions  
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(2.3) 

w h e r e  u i s  the  v e l o c i t y ,  V i s  the  s p e c i f i c  v o l u m e ,  y i s  the  P o i s s o n  a d i a b a t i c  index. The b o u n d a r y  cond i t ion  
on the  f r e e  s u r f a c e  i s  p =0 fo r  m =0.  It i s  a s s u m e d  tha t  the  e v a p o r a t i o n  cond i t ions  do not a p p e n d  p a r a m e t e r s  
wi th  i ndependen t  d i m e n s i o n a l i t i e s  to  the  a l r e a d y  e x i s t i n g  g o v e r n i n g  p a r a m e t e r s  o f  the  p r o b l e m  P0, P0, C, 
o~ ,~ .  

The  mot ion  wi th  t he  g o v e r n i n g  p a r a m e t e r s  i s  s e l f - s i m i l a r ,  wi th  a s e l f - s i m i l a r i t y  index  of  one.  Le t  
us  l i m i t  o u r s e l v e s  to  e v a p o r a t i o n  cond i t i ons  fo r  which  the  e v a p o r a t i o n  s u r f a c e ,  which  is  a p l ane ,  w i l l  move 
deep  in the  s u r f a c e  at  a c o n s t a n t  v e I o c i t y .  

3. Le t  us  i n t r o d u c e  the  d i m e n s i o n l e s s  v a r i a b l e s  

~k-- m U=_._u_ u p =  P__2___ 
u,,O,,t ' u:, ' 7~,,u~,~ ' v = VPo (3.1) 

(u) = (C / p~)l. (~+~)) 

The  s y s t e m  (2.3), w r i t t e n  in the  v a r i a b l e s  (3.1), b e c o m e s  

v' : q)C(~+~)A -~, P '  = - -  q~l-=A-i, U' : - -  q~-:~A -~ (3.2) 
A = ~2v - -  TP (q = (i --l)p~4+~,), (2+~)C4 (~+~)) 

The f i r s t  two e q u a t i o n s  o f  the  s y s t e m  (3.2) can  be e x a m i n e d  i nde pe nde n t l y  of  the  t h i r d .  The  v e l o c i t y  
can  be found b y  a q u a d r a t u r e  wi th  an add i t i ve  c o n s t a n t  fo r  v(X) and P ()~) known. The  s y s t e m  (3.2) has  been  
i n v e s t i g a t e d  p a r t i a l l y  in [3]. 

Le t  us  i n t r o d u c e  the  new v a r i a b l e s  s ,  l ,  z by  m e a n s  of  t he  f o r m u l a s  

s : ~ ,  l = 7 P / s v ,  z : ()~+~ v~) -i  (3.3) 

The  f i r s t  two e q u a t i o n s  of  the  s y s t e m  (3.2) b e c o m e  in the  new v a r i a b l e s  

dz z [2qz - -  (2 + ~) (l --  t)] 
Os 2s (1 - -  t) 
dl  qz (1-4- T) --  21 (l --  ~) 
ds 2s (l - -  l ) 

E q u a t i n g  the  n u m e r a t o r s  of  the  r i g h t  s i d e s  of  (3.4) to  z e r o ,  we obta in  two p a r t i c u l a r  s o l u t i o n s  

(3.4) 

l ~ - O ,  z = O  
2 + ~  2 §  

l =  l ~ =  T 2 - -  ~ z = z~ = -"-Uf-q ( l ~ - -  t )  (3.5) 

The f i r s t  so lu t i on  c o r r e s p o n d s  to  p = 0 and i s  of  no i n t e r e s t .  

The  s e c o n d  so lu t ion ,  t o g e t h e r  wi th  t he  v e l o c i t y  equat ion ,  r e s u l t s  in 

v = zl*/~ (~+~):'~, p = 2 ~  ~(2_~),,2z-,,~ U = - -  2 + a  ~-~/2 2--a I , ~ ]f~.- + U0 (3.6) 

Here U 0 is an arbitrary constant. The particular solution (3.6) has been mentioned in [3]. Dividing 
the first equation in (3.4) by the second, we obtain 

dz  z [2qz - -  (2 @ a) (1 --  i)] (3.7) 
d---i-= q z ( l  + ' f ) - - 2 l ( l - - t )  

T h e r e f o r e ,  the  p r o b l e m  of i n t e g r a t i n g  the  s y s t e m  (3.2) r e d u c e s  to the  i n t e g r a t i o n  of (3.7) s i n c e  f o r  a 
known d e p e n d e n c e  z(/) the  s o l u t i o n  of  the  r e m a i n i n g  equa t i ons  r e d u c e s  to q u a d r a t u r e s .  

In o r d e r  to  a n a l y z e  the  e x i s t e n c e  and  u n i q u e n e s s  of  the  so lu t ion  of  the  p r o b l e m  about  v a p o r  s c a t t e r i n g  
in a v a c u u m ,  l e t  us  e x a m i n e  the  f i e ld  of  i n t e g r a l  c u r v e s  of  (3.7). The  i n t e g r a l  c u r v e s  a r e  shown s c h e m a t i c -  
a l l y  in F ig .  1. The  a r r o w s  ind i ca t e  the  d i r e c t i o n  o f  g rowth  in the  v a r i a b l e  s.  

Two i n t e g r a l  c u r v e s  e n t e r  the  s i n g u l a r i t y  A ( sadd le  point)  wi th  the  c o o r d i n a t e s  1 = l l ,  z = z  1. 
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It fol lows f r o m  the second  equa t ion  in (3.4) tha t  the r e l a t i o n s h i p  for  s 

l = ~  [s lU @ ll 

is  v a l i d  in  the ne ighborhood  of the point  A, w he r e  ~ is  an a r b i t r a r y  cons tan t .  Let us note tha t  y > 0 a long  
the i n t e g r a l  cu rve  1 (Fig.  1) for  al l  a d m i s s i b l e  v a l u e s  of c~, q, and y .  Along  th i s  i n t e g r a l  cu rve  s = k z ~  0 
as  Z - ~ l  1. Along  the second  i n t e g r a l  cu rve  A y  <0  at the p o i n t A ,  hence s - -  ~ as  l - ~ l  1. It fol lows 
f r o m  (3.3) that  in the ne ighborhood  of the point  A 

l p = --l.__._:__. s(2_:) / 4, v = -----=-__ s-(~*~) / 4 (3.8) 

It is  s een  f rom (3.8) that  P--~ 0, v ~ ~ upon app roach ing  the point  A a long the first curve ,  i .e . ,  in 
th i s  case  the point  A c o r r e s p o n d s  to the b o u n d a r y  with the v a c u u m .  

The s i n g u l a r i t y  l = 0, z =0 is  a node. As  an  a n a l y s i s  of the s y s t e m  (3.4) shows,  the v a r i a b l e  s --+~o 
upon a p p r o a c h i n g  the point  O f rom both d i r e c t i o n s .  As  the s i n g u l a r i t y  l =1, z =0 is  approached ,  the v a r i -  
able  s ~ cons t  w 0. 

The in f in i t e ly  r e m o t e  point  l = ~ ,  z = ~  is a l so  s i n g u l a r .  The i n t e g r a l  c u r v e s  e n t e r  it  f r o m  the  d i r ec -  
t i on  d z / d l  = ~ / q .  Hence ,  the v a r i a b l e  s ~ 0 a c c o r d i n g  to the law s =Hl -2 / (2 -~ ) ,  where  H is  an  a r b i t r a r y  
cons tan t .  The equa t ions  

t V ~ ~ H s ~ ' ~ ' ~ ' 0 '  P-P~=T ~m, p=po T 

q s (t-~) 'z + Uo U 7(l -~)P1 

a re  va l id  for  the dens i ty ,  p r e s s u r e ,  and  ve loc i t y  in the ne ighborhood  of the point  l = ~ ,  z = ~ ,  where  U 0 is 
an a r b i t r a r y  cons tan t .  Therefore~ the  point  I = co, z = ~  c o r r e s p o n d s  to the b o u n d a r y  with a p i s ton  of c o n -  
s t an t  nonze ro  p r e s s u r e .  

In the ne ighborhood  of any  n o n s i n g u l a r  point  ( 10, z0) 

dt _ q z  (t,  .:- -i) - -  2z,, (z, - -  t)  __ q~ =~_ 0 
ds 2 ( L -  ~) s s 

f r o m  which 
S ~ N e  [,r 

Here  N is  a nonze ro  a r b i t r a r y  cons tan t ,  i .e . ,  s ~ 0 at n o n s i n g u l a r  po in ts  of (3.7). Thus ,  the point  A 
is  the s ing le  point  which c o r r e s p o n d s  to the b o u n d a r y  with the v a c u u m ,  hence the b o u n d a r y  condi t ion  for  
(3.7), c o r r e s p o n d i n g t o  the b o u n d a r y  with the v a c u u m ,  is  z = z 1 for  l = l 1 a long  c u r ve  1 (Fig. 1). 

4. Since the  v a p o r  flow may be d i s c o n t i n u o u s  (with a shock),  l e t  us  c o n s i d e r  the r e l a t i o n  be tween  l 
and z on both s ides  of the d i s con t i nuous  s e l f - s i m i l a r  so lu t ions .  F r o m  the  Hugoniot  r e l a t i o n s h i p s  

V + - - V  = - - W  - l ( u + - u ) ,  u + - - u  = W - l ( p + - p _ )  

E+ - -  E_ = 1/2  (p+ + p _ ) ( Y  - -  Y+) 
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the relationship between (l, z ) .  and (l, z)+ follows in the form 

z + : z _  T - - t  @ 2 / _  T - -  t -~ 2/_ 

Here W is the shock velocity,  the minus subscr ipt  r e fe r s  to the state ahead of the front, and the plus 
to the state behind the front. It follows f rom (4.1) that the points of the llne l =1 go over  into themselves ,  
i.e., 1 =1 corresponds  to a weak discontinuity. This also follows f rom Eq. (3.3) for l, which can be r e -  
wri t ten as / = ( c p / X )  2 since the speed of sound is c =  4~/pV in an ideal gas. 

The points with l_< 1 t r ans fo rm into points with l -  >1; hence, z - >  z, meaning p > p also, which -v -r § - 

corresponds  to a compress ion  shock. Points with l_ > 1 t r a n s f o r m  into points with l+ < 1; hence, z+< z_, 
which cor responds  to a rarefact ion shock. Rarefact ion shocks are mechanically unstable in an ideal gas; 
hence, the points with I > 1 cannot correspond to the states ahead of the shock front. The possible shock 
passages  are shown in Fig. 2. The domain of possible states ahead of the front are  hatched horizontally, 
and behind the front, ver t ical ly .  The line 1 =0 goes over  into the line l = 2 y / ( y - l ) .  

The dashed line 1B in Fig. i is the locus of states ahead of the shock front which go over into points 
of the curve 1. 

5. The information presented about the integral curves  of (3.4) and (3.7), as well as about the p rope r -  
t ies  of the se l f - s imi la r  shocks, is adequate for going over  to a considerat ion of the existence and uniqueness 
of the solution of the problem about vapor  scat ter ing in a vacuum. The solution of (3.7) which satisfies the 
condition z =z 1 at l = l 1 along curve 1 exists and is unique if the boundary condition in the plane of evapora-  
tion is mapped in the l, z var iables  by: 

1) a point belonging to curve 1; 

2) a line having just one point of intersect ion with curve 1 but no common points with t r iangle  1 0 B; 

3) a point belonging to the t r iangle 1 0 B. 

There is no solution or  it is not unique in the remaining cases .  

Indeed, in the f i rs t  case the solution is continuous and consists  of pieces of the separa t r ix  MA, where 
M is a point corresponding to the surface of evaporation. If this point coincides with A, then the problem 
is solved by using the par t icu lar  solution (3.6). 

The second case reduces to the f irst ,  but the initial values of 1 and z are  not given in advance, but are  
determined by the intersect ion between the separa t r ix  1 and a line corresponding to the boundary condition. 

In the th i rd  case the solution is discontinuous and consists  of a piece of the integral  curve L0L 1' and 
a piece of the curve L1A, where L 0 is the point corresponding to the evaporation surface and L 1' is the 
intersect ion between the integral curve and the line 1B,while L 1 is the point into which the point L l '  t r a n s -  
forms on the shock (Fig. 1). 

Let us examine the case of spoilage of the existence and uniqueness conditions of the solution to (3.7). 
If a point corresponding to the surface of evaporation does not belong to the tr iangle 1 0 B and does not lie 
on the separa t r ix  1, then it is seen from Fig. 1 that there  is no integral curve (continuous or  discontinuous) 
which would connect this point to the point A while retaining the monotonicity of the change in the variable 
s. (The solution in which the variable s = X 2 does not change monotonically has no physical  meaning.) If a 
line belonging to the tr iangle 1 0 B cor responds  to the boundary condition on the evaporation surface,  then 
an infinite set of discontinuous solutions exists ,  s tar t ing at points of this line. The solutions are  constructed 
exactly as in the th i rd  case.  

To construct  a unique solution of (3.4) for known values of l and z on the evaporation surface,  it is 
necessa ry  and sufficient to ass ign the velocity D of the evaporat ion surface.  This follows f rom (3.4). To 
find the dependence U (X) it is neces sa ry  and sufficient to ass ign the vapor  velocity u 1 on the evaporation 
surface.  This follows f rom the th i rd  equation in the sys tem (3.2). 

It follows f rom the s t ruc ture  of the solution to (3.7) that two qualitatively distinct modes of sel f -  
s imi la r  vapor  scat ter ing are  possible: .  

1) continuous flow; 

2) flow with a shock. 
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The solution of the problem of vapor  scat ter ing in a vacuum exists  and is unique if the velocity of the 
evaporat ion surface and the veloci ty of the vapors  thereon as well as the density and p re s su re  or  their  r e l a -  
tionship can be determined f rom the evaporat ion conditions. 

The following evaporat ion conditions have been formulated in [3] for energy l iberation of the form 
(2.1). The law of evaporat ion surface motion is given by the equation 

t 

I Q (ml, t) dt = c~ (T1 -- To) -~ 0 = ~ (5.1) 
O 

f rom which it follows that the surface veloci ty  is D= (c~fl) -1/2 C fla. 

Here m l is a coordinate of the evaporation surface,  T o and C v are  the initial t empera tu re  and specific 
heat of the condensed mater ia l ,  and T 1 and 0 are  the t empera tu re  and specific heat of evaporation. Accord -  
ing to (5.1) the evaporation surface at t ime t is at a point where the t empera tu re  has been ra i sed  because 
of energy liberation, f rom the initial to the evaporation tempera ture ,  and energy  equal to the heat of evapora-  
tion has been liberated. The remaining evaporat ion conditions are 

(ul --  D)pi = -- Dp0, Pi ---- RTlpi (5.2) 

where  Pl, Pl, and u 1 are  the vapor  density, p re s su re ,  and velocity, and R is the universal  gas constant. In 
the l, z var iables ,  these conditions yield the line 

z=/(T~l~) -1 (~=Rrl/uo ~, Zl=D/u0) (5.3) 

The line (5.3) passes  through the origin; hence (3.7) has an infinity of discontinuous solutions which 
s tar t  at points in the interval  0~ of the line (5.3) (Fig. 1). Equations (3.4) and (3.2) also have an infinite 
number of solutions in this case;  hence the evaporat ion conditions (5.1) and (5.2) should be acknowledged 
unsuitable. 

The example considered for s e l f - s imi l a r  nonadiabatic motion shows that the physical  consis tency of 
the evaporation conditions still does not ensure  the existence and uniqueness of the solution of the problem. 
An investigation of the evaporat ion conditions f rom this viewpoint is necessa ry .  

The author is grateful  to V. F. Kuropatenko and V. E. Neuvazhaev for aid and interest  in the research .  
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